Laser photonic nanojets triggered thermoplasmonic micro/nanofabrication of polymer materials for enhanced resolution

Author:

Elkarkri Yahya,Li Xiaolai,Zeng Binglin,Lian Zhaoxin,Zhou Ji,Wang YuliangORCID

Abstract

Abstract Micro/nanofabrication of polymer materials is of interest for micro/nanofluidic systems. Due to the optical diffraction limit, it remains a challenge to achieve nanoscale resolution fabrication using an ordinary continuous-wave laser system. In this study, we therefore propose a laser photonic nanojet-based micro/nanofabrication method for polymer materials using a low-power and low-cost continuous-wave laser. The photonic nanojets were produced using glass microspheres. Moreover, a thermoplasmonic effect was employed by depositing a gold layer beneath the polymer films. By applying the photonic nanojet triggered thermoplasmonics, sub-micrometer surface structures, as well as their arrays, were fabricated with a laser power threshold value down to 10 mW. The influences of the microsphere diameters, and thicknesses of gold layers and polymer films on the fabricated microstructures were systematically investigated, which aligns well with the finite-difference time-domain simulation results.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3