Nanodesigns for Na3V2(PO4)3-based cathode in sodium-ion batteries: a topical review

Author:

Hao Ze-Lin,Du Miao,Guo Jin-Zhi,Gu Zhen-Yi,Zhao Xin-Xin,Wang Xiao-Tong,Lü Hong-Yan,Wu Xing-LongORCID

Abstract

Abstract With the rapid development of sodium-ion batteries (SIBs), it is urgent to exploit the cathode materials with good rate capability, attractive high energy density and considerable long cycle performance. Na3V2(PO4)3 (NVP), as a NASICON-type electrode material, is one of the cathode materials with great potential for application because of its good thermal stability and stable. However, NVP has the inherent problem of low electronic conductivity, and various strategies are proposed to improve it, moreover, nanotechnology or nanostructure are involved in these strategies, the construction of nanostructured active particles and nanocomposites with conductive carbon networks have been shown to be effective in improving the electrical conductivity of NVP. Herein, we review the research progress of NVP performance improvement strategies from the perspective of nanostructures and classifies the prepared nanomaterials according to their different nano-dimension. In addition, NVP nanocomposites are reviewed in terms of both preparation methods and promotion effects, and examples of NVP nanocomposites at different nano-dimension are given. Finally, some personal views are presented to provide reasonable guidance for the research and design of high-performance polyanionic cathode materials of SIBs.

Funder

National Natural Science Foundation of China

Science Technology Program of Jilin Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3