Machine learning accelerated search for the impact limit of the graphene/aluminum alloy whipple structure

Author:

Ge QinghongORCID,Zhu Weiping,Jiang Jin-WuORCID

Abstract

Abstract This paper proposes a Whipple structure to enhance the impact resistance of graphene/aluminum alloy composites by varying the interlayer spacing between graphene and aluminum alloy. The increased interlayer spacing provides more deformation space for the graphene to absorb more deformation energy, and enables the formation of a debris cloud from the bullet fragments and graphene fragments, significantly reducing the impact energy per unit area of the next material. The impact limit serves as a critical metric for assessing the impact resistance of the Whipple structure. Based on molecular dynamics simulations, we developed a machine learning model to predict the protection of aluminum alloy, and quickly determined the impact limits of velocity, bullet radius, and interlayer spacing by using the machine learning model. An empirical equation for the impact limit of interlayer spacing was established. The results showed that non-zero interlayer spacing can significantly improve the impact resistance of the hybrid structure; to fully exploit the superior impact resistance of this Whipple structure, the number of graphene layers should be at least 3. Furthermore, at high impact velocities and large bullet radii, the impact limit of the interlayer spacing exhibits a substantial correlation with the number of graphene layers. These results provide valuable information for the design of the impact resistance of the graphene/aluminum alloy composites.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3