B, P, and S heteroatom doped, bio- and hemo-compatible 2D graphitic-carbon nitride (g-C3N4) with antioxidant, light-induced antibacterial, and bioimaging endeavors

Author:

Demirci Sahin,Suner Selin Sagbas,Neli Ozlem Uguz,Koca AtifORCID,Sahiner NurettinORCID

Abstract

Abstract The synthesis of two-dimensional (2D) graphitic g-C3N4 and heteroatom-doped graphitic H@g-C3N4 (H: B, P, or S) particles were successfully done using melamine as source compounds and boric acid, phosphorous red, and sulfur as doping agents. The band gap values of 2D g-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4 structures were determined as 2.90, 3.03, 2.89, and 2.93 eV, respectively. The fluorescent emission wavelengths of 2D g-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4 structures were observed at 442, 430, 441, and 442 nm, respectively upon excitation at λ Ex = 325 nm. There is also one additional new emission wavelength was found at 345 nm for B50@g-C3N4 structure. The blood compatibility test results of g-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4 structures revealed that all materials are blood compatible with <2% hemolysis and >90% blood clotting indices at 100 μg ml−1 concentration. The cell toxicity of the prepared 2D graphitic structures were also tested on L929 fibroblast cells, and even the heteroatom doped has g-C3N4 structures induce no cytotoxicity was observed with >91% cell viability even at 250 μg ml−1 particle concentration with the exception of P50@g-C3N4 which as >75 viability. Moreover, for 2D g-C3N4, B50@g-C3N4, and S50@g-C3N4 constructs, even at 500 μg ml−1 concentration, >90% cell viabilities was monitored. As a diagnostic material, B50@g-C3N4 was found to have significantly high penetration and distribution abilities into L929 fibroblast cells granting a great potential in fluorescence imaging and bioimaging applications. Furthermore, the elemental doping with B, P, and S of g-C3N4 were found to significantly increase the photodynamic antibacterial activity e.g. more than half of bacterial elimination by heteroatom-doped forms of g-C3N4 under UVA treatment was achieved.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3