Effect of fluorine doping on the NO2-sensing properties of MoS2nanoflowers

Author:

Huang Yixuan,Li Donglin,Chai Wenxiang,Jin Dingfeng,Jin HongxiaoORCID

Abstract

AbstractThe somewhat slow recovery kinetics of NO2sensing at low temperatures are still challenging to overcome. To enhance the gas sensing property, fluorine is doped to MoS2nanoflowers by facile hydrothermal method. Extensive characterization data demonstrate that F was effectively incorporated into the MoS2nanoflowers, and that the microstructure of the MoS2nanoflowers did not change upon F doping. The two MoS2doped with varying concentrations of fluorine were tested for their sensing property to NO2gas. Both of them show good repeatability and stability. A smaller recovery time was seen in the F-MoS2-1 sample with a little amount of F loading, which was three times quicker than that of pure MoS2. The key reason for the quicker recovery time of this material was found to be the fluorine ions that had been adsorbed on the surface of F-MoS2-1 would take up some of the NO2adsorption site. Additionally, the sample F-MoS2-2 with a higher F doping level demonstrated increased sensitivity. The F-MoS2-2 sensor’s high sensitivity was mostly due to the lattice fluorine filled to the sulfur vacancy, which generated impurity levels and reduced the energy required for its electronic transition. This study might contribute to the development of new molybdenum sulfide based gas sensor.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference39 articles.

1. Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects;Guo;Sci. Bull.,2019

2. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing;Yuan;Adv. Mater.,2019

3. NOx removal with efficient recycling of NO2 from iron-ore sintering flue gas: a novel cyclic adsorption process;Liu;J. Hazard. Mater.,2021

4. Introduction into the environment;Speight,2017

5. Trends, seasonal variability and dominant NO x source derived from a ten year record of NO2 measured from space;Van Der A;J. Geophys. Res.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3