Gas sensing devices based on two-dimensional materials: a review

Author:

Wang Boran,Gu Yi,Chen LinORCID,Ji Li,Zhu HaoORCID,Sun Qingqing

Abstract

Abstract Gas sensors have been widely utilized penetrating every aspect of our daily lives, such as medical industry, environmental safety testing, and the food industry. In recent years, two-dimensional (2D) materials have shown promising potential and prominent advantages in gas sensing technology, due to their unique physical and chemical properties. In addition, the ultra-high surface-to-volume ratio and surface activity of the 2D materials with atomic-level thickness enables enhanced absorption and sensitivity. Till now, different gas sensing techniques have been developed to further boost the performance of 2D materials-based gas sensors, such as various surface functionalization and Van der Waals heterojunction formation. In this article, a comprehensive review of advanced gas sensing devices is provided based on 2D materials, focusing on two sensing principles of charge-exchange and surface oxygen ion adsorption. Six types of typical gas sensor devices based on 2D materials are introduced with discussion of latest research progress and future perspectives.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3