High-output soft-contact fiber-structure triboelectric nanogenerator and its sterilization application

Author:

He Jianwei,Guo Xuhua,Pan CaofengORCID,Cheng GangORCID,Zheng Mingli,Zi Yunlong,Cui Hongzhi,Li XiaoyiORCID

Abstract

Abstract Infectious diseases are spreading rapidly with the flow of the world’s population, and the prevention of epidemic diseases is particularly important for public and personal health. Therefore, there is an urgent need to develop a simple, efficient and non-toxic method to control the spread of bacteria and viruses. The newly developed triboelectric nanogenerator (TENG) can generate a high voltage, which inhibits bacterial reproduction. However, the output performance is the main factor limiting real-world applications of TENGs. Herein, we report a soft-contact fiber-structure TENG to avoid insufficient friction states and to improve the output, especially at a high rotation speed. Rabbit hair, carbon nanotubes, polyvinylidene difluoride film and paper all contain fiber structures that are used to guarantee soft contact between the friction layers and improve the contact state and abrasion problem. Compared with a direct-contact triboelectric nanogenerator, the outputs of this soft-contact fiber-structure TENG are improved by about 350%. Meanwhile, the open-circuit voltage can be enhanced to 3440 V, which solves the matching problems when driving high-voltage devices. A TENG-driven ultraviolet sterilization system is then developed. The bactericidal rate of this sterilization system can reach 91%, which significantly reduces the risk of disease spread. This work improves a forward-looking strategy to improve the output and service life of the TENG. It also expands the applications of self-powered TENG sterilization systems.

Funder

National Natural Science Foundation of China

Open Project of Key Lab of Special Functional Materials of Ministry of Education

Fundamental Research Funds for the Natural Science Foundation of Shandong Province, China

Joint Funds of National Natural Science Foundation of China

Central Universities, China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3