Abstract
Abstract
Herein, we report the use of nanostructured crystalline silicon as a thermoelectric material and its integration into thermoelectric devices. The proof-of-concept relies on the partial suppression of lattice thermal conduction by introducing pores with dimensions scaling between the electron mean free path and the phonon mean free path. In other words, we artificially aimed at the well-known ‘electron crystal and phonon glass’ trade-off targeted in thermoelectricity. The devices were fabricated using CMOS-compatible processes and exhibited power generation up to 5.5 mW cm−2 under a temperature difference of 280 K. These numbers demonstrate the capability to power autonomous devices with environmental heat sources using silicon chips of centimeter square dimensions. We also report the possibility of using the developed devices for integrated thermoelectric cooling.
Funder
FP7 Ideas: European Research Council
NANO2017
French RENATECH network
STMicroelectronics-IEMN common laboratory
Agence Nationale de la Recherche
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献