Abstract
Abstract
The customization of hybrid nanofluids to achieve a particular and controlled growth rate of thermal transport is done to meet the needs of applications in heating and cooling systems, aerospace and automotive industries, etc. Due to the extensive applications, the aim of the current paper is to derive a numerical solution to a wall jet flow problem through a stretching surface. To study the flow problem, authors have considered a non-Newtonian Eyring–Powell hybrid nanofluid with water and CoFe2O4 and TiO2 nanoparticles. Furthermore, the impact of a magnetic field and irregular heat sink/source are studied. To comply with the applications of the wall jet flow, the authors have presented the numerical solution for two cases; with and without a magnetic field. The numerical solution is derived with a similarity transformation and MATLAB-based bvp4c solver. The value of skin friction for wall jet flow at the surface decreases by more than 50% when the magnetic field
M
A
=
0.2
is present. The stream function value is higher for the wall jet flow without the magnetic field. The temperature of the flow rises with the dominant strength of the heat source parameters. The results of this investigation will be beneficial to various applications that utilize the applications of a wall jet, such as in car defrosters, spray paint drying for vehicles or houses, cooling structures for the CPU of high-processor laptops, sluice gate flows, and cooling jets over turbo-machinery components, etc.
Funder
King Saud University, Riyadh, Saudi Arabia
Researchers Supporting Project
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Reference50 articles.
1. Laminar flow of a slightly viscous incompressible fluid that issues from a slit and passes over a flat plate;Tetervin;Natl. Advis. Comm. Aeronaut.,1948
2. Development of 2D laminar jet along a solid surface;Akatnov;Leningr. Politek. Inst. Tr.,1953
3. The wall jet;Glauert;J. Fluid Mech.,1956
4. Effects of compressibility on a laminar wall jet;Riley;J. Fluid Mech.,1958
5. Jet profile solutions of the Falkner–Skan equation;Astin;Zeitschrift Für Angew. Math. und Phys. ZAMP 1996 475,1996
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献