Abstract
Abstract
We succeeded in the fabrication of topological insulator (Bi0.57Sb0.43)2Te3 Hall bars as well as nanoribbons by means of selective-area growth using molecular beam epitaxy. By performing magnetotransport measurements at low temperatures information on the phase-coherence of the electrons is gained by analyzing the weak-antilocalization effect. Furthermore, from measurements on nanoribbons at different magnetic field tilt angles an angular dependence of the phase-coherence length is extracted, which is attributed to transport anisotropy and geometrical factors. For the nanoribbon structures universal conductance fluctuations were observed. By performing a Fourier transform of the fluctuation pattern a series of distinct phase-coherent closed-loop trajectories are identified. The corresponding enclosed areas can be explained in terms of nanoribbon dimensions and phase-coherence length. In addition, from measurements at different magnetic field tilt angles we can deduce that the area enclosed by the loops are predominately oriented parallel to the quintuple layers.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献