Silicene growth mechanisms on Au(111) and Au(110) substrates

Author:

Barboza Alexandre MORCID,da Silva-Santos José A,Aliaga Luis C R,Bastos Ivan NORCID,Faria Daiara F

Abstract

Abstract Despite the remarkable theoretical applications of silicene, its synthesis remains a complex task, with epitaxial growth being one of the main routes involving depositing evaporated Si atoms onto a suitable substrate. Additionally, the requirement for a substrate to maintain the silicene stability poses several difficulties in accurately determining the growth mechanisms and the resulting structures, leading to conflicting results in the literature. In this study, large-scale molecular dynamics simulations are performed to uncover the growth mechanisms and characteristics of epitaxially grown silicene sheets on Au(111) and Au(110) substrates, considering different temperatures and Si deposition rates. The growth process has been found to initiate with the nucleation of several independent islands homogeneously distributed on the substrate surface, which gradually merge to form a complete silicene sheet. The results consistently demonstrate the presence of a buckled silicene structure, although this characteristic is notably reduced when using an Au(111) substrate. Furthermore, the analysis also focuses on the quality and growth mode of the silicene sheets, considering the influence of temperature and deposition rate. The findings reveal a prevalence of the Frank–van der Merwe growth mode, along with diverse forms of defects throughout the sheets.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3