Enhanced toluene gas-sensing properties of MEMS sensor based on Pt-loaded SnO2 nanoparticles

Author:

Liu Xiaofan,Zhao Jian,Wang Yongguang,Hu Yan,Xu Linjie,Yao LongchaoORCID,Zheng Chenghang,Yang Jian,Gao Xiang

Abstract

Abstract Rapid detection of low concentration toluene is highly desirable in environment monitoring, industrial processes, medical diagnosis, etc. In this study, we prepared Pt-loaded SnO2 monodispersed nanoparticles through hydrothermal method and assembled a sensor based on micro-electro-mechanical system (MEMS) to detect toluene. Compared with the pure SnO2, the 2.92 wt% Pt-loaded SnO2 sensor exhibits a 2.75 times higher gas sensitivity to toluene at about 330 °C. Meanwhile, the 2.92 wt% Pt-loaded SnO2 sensor also has a stable and good response to 100 ppb of toluene. Its theoretical detection limit is calculated as low as 12.6 ppb. Also, the sensor has a short response time of ∼10 s to different gas concentrations, as well as the excellent dynamic response—recovery characteristics, selectivity, and stability. The improved performance of Pt-loaded SnO2 sensor can be explained by the increase of oxygen vacancies and chemisorbed oxygen species. The electronic and chemical sensitization of Pt to SnO2-based sensor, together with small size and fast gas diffusion of the MEMS design ensured fast response and ultra-low toluene detection. This provides new ideas and decent prospect for developing miniaturized, low-power-consumption, and portable application of gas sensing devices.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3