Abstract
Abstract
Quercetin (QU), a natural flavonoid with potent anti-inflammatory and antioxidant properties, holds promise in treating acute liver injury (ALI). Nonetheless, its limited solubility hampers its efficacy, and its systemic distribution lacks targeting, leading to off-target effects. To address these challenges, we developed macrophage membrane-coated quercetin-loaded PLGA nanoparticles (MVs-QU-NPs) for active ALI targeting. The resulting MVs-QU-NPs exhibited a spherical morphology with a clear core–shell structure. The average size and zeta potential were assessed as 141.70 ± 0.89 nm and –31.83 ± 0.76 mV, respectively. Further studies revealed sustained drug release characteristics from MVs-QU-NPs over a continuous period of 24 h. Moreover, these MVs-QU-NPs demonstrated excellent biocompatibility when tested on normal liver cells. The results of biodistribution analysis in ALI mice displayed the remarkable ALI-targeting ability of MVs-DiD-NPs, with the highest fluorescence intensity observed in liver tissue. This biomimetic approach combining macrophage membranes with nanoparticle delivery, holds great potential for targeted ALI treatment.
Funder
The National Natural Science Foundation of China
National College Students Innovation and Entrepreneurship Training Program
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献