Abstract
Abstract
Zinc oxide nanostructures (ZnO NSs) are one of the most versatile and promising metal oxides having significant importance in biomedical fields, especially for therapeutic and diagnostic purposes. ZnO possesses unique physio-chemical and biological properties such as photo-chemical stability, corrosion resistance, mechanical properties, biocompatibility, higher targeting capability, and ROS-triggered cytotoxicity. These ZnO NSs have enhanced potential for various biomedical applications such as cancer therapy, drug delivery, bioimaging, tissue engineering, etc. Furthermore, ZnO possesses excellent luminescent properties that make it useful for bioimaging and image-guided targeted drug delivery, thereby reducing the unwanted side effects of chemotherapeutic agents. Besides, these characteristics, enhanced permeability and retention effect, electrostatic interaction, ROS production, and pH-dependent dissolution of ZnO also make it potential aspirant as therapeutic that are suggested as key parameters for cytotoxic and cell death mechanisms via apoptosis, autophagy, and mitophagy mechanisms. Here, the recent progress and advances of ZnO NSs in bioimaging, drug delivery, and tissue engineering are discussed along with the advantages, limitations, and future advancement for biological applications.
Funder
Department of Science and Technology, Government of India
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献