Study of Methods for Increasing Ductility and Formability of Cold-Rolled Ti-Stabilized IF Steels

Author:

Zaitsev A I,Rodionova I G,Koldaev A V

Abstract

Abstract Study of the influence of the chemical composition and parameters of the complex treatment technology on characteristics of the microstructure, phase precipitates, the solid solution state, and mechanical properties was carried out for hot-rolled and cold-rolled Ti-stabilized IF steels. Cold-rolled products were annealed according to the regime of continuous hot-dip galvanizing units. The following methods of investigation were used: light, scanning and transmission electron microscopy, mechanical properties testing, thermodynamic analysis of phase stability conditions, and determination of the interstitial impurities content in a solid solution by internal friction. The possibility and conditions of a significant increase in ductility, formability of cold-rolled steels are established. They are obtained not by the traditional way consisting in reducing the content of interstitial elements and impurities, but by giving them a favorable form of existence. This is achieved by optimizing the chemical composition, first of all, the sulfur content, and parameters of thermo-deformation treatment of steel, which ensure complete carbon binding in Ti4C2S2 as a result of TiS transformation already at the hot-rolling stage. To reduce the yield and tensile strength, it is necessary to decrease the content of interstitial elements and to increase the temperature of recrystallization annealing of cold-rolled steel.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3