Co-simulation of cool down process from 300 to 80 K for ITER Tokamak

Author:

Takami S,Iwamoto A,Maekawa R,Qiu L,Grillot D

Abstract

Abstract Dynamic simulation of Tokamak superconducting magnet system has been conducted to investigate the cool-down process from 300 to 80 K. The simulation focuses on the cool-down speed variations with respect to the global temperature gradients in the different coils; Toroidal Field (TF) coil, TF STructure (TF-ST), Central Solenoid (CS) and Poloidal Field (PF)/Correction Coil (CC) systems. As imposing the maximum temperature gradients dT max ≤ 50K, the speed should be adjusted, ensuring the limited mechanical stresses due to thermal contractions. So far, the process simulation of Tokamak cryogenic system has been concentrated on the Deuterium Tritium (DT) operation phase; therefore, it is necessary to revise the model to extend its capability for the cool-down; for example, the thermo-hydraulic properties of Cable-in-Conduit Conductor (CICC) for each coil, mechanical properties of materials for the magnet system. The cool-down process is implemented at the helium refrigerator by utilizing LN2 heat exchanger up to 80 K. Its speed is set at -0.8 K/hr as a baseline, which can be controlled by the global temperature gradients in the magnet system. The process will be on hold as dT max ≥ 50K, and resumed once dT max < 50K. The paper discusses the cool-down processes of the Tokamak and identifies the impact on the speed, dT i/dt, of each component.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3