Combustion temperature analysis in a fluidized-bed reactor by utilizing palm oil biomass for a renewable energy

Author:

Erdiwansyah ,Mahidin ,Husin Husni,Nasaruddin ,Muhibbuddin ,Faisal M,Muhtadin

Abstract

Abstract Biomass from palm oil is a renewable energy source that can be utilized and has very promising availability. Biomass energy is a renewable and sustainable energy that can replace conventional (fossil) fuels. The main objective of the experiment in this article is to analyze the combustion temperature, emissions, and efficiency of palm oil biomass fuel to use and applied in rural/remote areas. The palm oil biomass used in this study is palm kernel shells, empty fruit bunches, oil palm midrib, and oil palm fibers. The experiments in the research carried out in a fluidized-bed combustion chamber designed explicitly with capacities of up to 5 kg of biomass. The results of operations on fluidized-bed when the valve is open 100%, 75%, and 50% with overall palm oil biomass show a high combustion temperature. The highest combustion temperature was recorded in the TC test for 100% open valves with 3 kg biomass of 943°C. While the minimum combustion temperature obtained on TF2 at 50% open valve with 1 kg biomass of 619°C, overall combustion temperatures in this experiment showed high results. The maximum emission for O2 is 20.4% which is obtained at 50% open valve, while for CO2 the maximum emission is produced when 100% open valve is 19.9% with a biomass weight of 1 kg and 3 kg, respectively. The yield for maximum combustion efficiency when using 1 kg of biomass recorded at 50% open valve was 94.9%. While the minimum efficiency of 87.7% is obtained when the valve is 100% open with biomass of 2 kg. As the biomass fuel used in fluidized-bed increases, the combustion temperature also increases significantly.

Publisher

IOP Publishing

Subject

General Medicine

Reference37 articles.

1. Renewable energy in Southeast Asia: Policies and recommendations;Erdiwansyah;Sci. Total Environ,2019

2. Renewable Energy Outlook for ASEAN,2016

3. Target and demand for renewable energy across 10 ASEAN countries by 2040;Erdiwansyah;Electr. J,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3