Parametric and numerical Finite Element simulation of wind turbine blades subjected to thermal residual stresses

Author:

Ayoubi Peyman,Rashvand Kaveh,Ayyobi Pedram,Mohammadi Moloud

Abstract

Abstract This study aims to contribute to the ongoing efforts to enhance the reliability and durability of wind turbine blades, a critical component in wind energy generation. Specifically, this research addresses the issue of tunneling cracking and severe damage that can occur in wind turbine blades due to cohesive failure of the trailing edge. To achieve this objective, the study employs a rigorous approach, utilizing a full three-dimensional (3D) modeling strategy with finite element analysis (FEA) to simulate the behavior of wind turbine blades. The effect of cohesive materials and layered simulation methods on the thermal residual stress and crack propagation is thoroughly investigated. In particular, the study assesses the influence of carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP) materials on the phenomenon under consideration. In addition, the study undertakes a comprehensive parametric analysis to identify the independent effects of material properties and numerical simulation on thermal residual stress. Moreover, the research explores the behavior of the cohesive zone model in terms of thermal residual stress and crack propagation. The findings of this study have significant implications for researchers and practitioners in the wind energy industry. The study’s outcomes can aid in the development of improved materials and simulation techniques to mitigate thermal residual stress and prevent the occurrence of tunneling cracking and other types of damage in wind turbine blades. As such, this research contributes to the broader efforts to advance the reliability, efficiency, and sustainability of wind energy generation.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Reference19 articles.

1. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment;Baldan;J Mater Sci,2004

2. Impact of site-specific thermal residual stress on the fatigue of wind-turbine blades;Antoniou;AIAA Journal,2020

3. Residual Stresses Generation in Ultra-Thick Components for Wind Turbine Blades;Struzziero;Procedia CIRP,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3