Investigations of atomic and molecular processes of NBI-heated discharges in the MAST Upgrade Super-X divertor with implications for reactors

Author:

Verhaegh KevinORCID,Harrison JamesORCID,Lipschultz BruceORCID,Lonigro NicolaORCID,Kobussen Stijn,Moulton DavidORCID,Osborne NickORCID,Ryan PeterORCID,Theiler ChristianORCID,Wijkamp TijsORCID,Brida DominikORCID,Derks GijsORCID,Doyle RhysORCID,Federici FabioORCID,Hakola AnttiORCID,Henderson StuartORCID,Kool BobORCID,Newton Sarah,Osawa Ryoko,Pope Xander,Reimerdes HolgerORCID,Vianello NicolaORCID,Wischmeier MarcoORCID, ,

Abstract

Abstract This experimental study presents an in-depth investigation of the performance of the MAST-U Super-X divertor during NBI-heated operation (up to 2.5 MW) focussing on volumetric ion sources and sinks as well as power losses during detachment. The particle balance and power loss analysis revealed the crucial role of Molecular Activated Recombination and Dissociation (MAR and MAD) ion sinks in divertor particle and power balance, which remain pronounced in the change from ohmic to higher power (NBI heated) L-mode conditions. The importance of MAR and MAD remains with double the absorbed NBI heating. MAD results in significant power dissipation (up to 20 % of P SOL ), mostly in the cold ( T e < 5 eV) detached region. Theoretical and experimental evidence is found for the potential contribution of D to MAR and MAD, which warrants further study. These results suggest that MAR and MAD can be relevant in higher power conditions than the ohmic conditions studied previously. Post-processing reactor-scale simulations suggests that MAR and MAD can play a significant role in divertor physics and synthetic diagnostic signals of reactor-scale devices, which are currently underestimated in exhaust simulations. This raises implications for the accuracy of reactor-scale divertor simulations of particularly tightly baffled (alternative) divertor configurations.

Funder

H2020 Euratom

FuseNet

Staatssekretariat für Bildung, Forschung und Innovation

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3