Preliminary accident analysis of the loss of vacuum in vacuum vessel for the European DEMO HCPB blanket concept

Author:

Jin Xue ZhouORCID,Raskob Wolfgang

Abstract

Abstract Design basis accidents are investigated continuously for the European DEMO reactor accompanying its development. One selected postulated initial event (PIE) is a loss of vacuum (LOVA) in vacuum vessel (VV) with large ingress of air induced by rupture in a VV penetration. It has been investigated for the helium cooled pebble bed (HCPB) blanket concept according to the DEMO baseline 2017. The associated primary heat transfer system (PHTS) and the related systems in the tokamak building, from the VV to the PHTS vault and galleries, are considered for the investigation. The LOVA is postulated to occur at a port seal of the electron cyclotron equatorial port plug on the side of the closure plate with (i) a small leak of 1.0 × 10−3 m2, or (ii) a large break size of 1.0 × 10−2 m2. Air ingress from one port cell into the VV leads to the VV pressurization and the fusion power termination followed by an unmitigated plasma disruption. A loss of off-site power for 32 h is assumed to coincide with the disruption. An in-vessel loss of coolant accident (LOCA) is considered as a consequence if the affected first wall (FW) reaches the defined temperature of 1000 °C. The radioactive inventories in the VV (tritium, W-dust) can mobilize towards the VVPSS, the affected systems in the building and the environment due to pressurization, venting and leak conditions. MELCOR 1.8.6 for fusion is applied for this deterministic safety analysis. The resulting releases of radioactivity to the environment are then provided for dose calculation using the computer systems UFOTRI and COSYMA. Outcomes of this LOVA analysis are critically discussed: the transient evolutions of different cases are compared; hydrogen production is detected in case of aggravating FW failure; the source terms (tritium, W-dust) are transported to the connected systems; and the dose results from the environmental releases are provided.

Funder

Euratom Research and Training Programme

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3