Abstract
Abstract
The accurate identification and control of plasma instabilities is important for successful fusion experiments. First-principle simulations that can provide physics-based instability information such as the mode structure are generally not fast enough for real-time applications. In this work, a workflow has been presented to develop deep-learning based surrogate models for the first-principle simulations using the gyrokinetic toroidal code (GTC). The trained surrogate models of GTC (SGTC) can be used as physics-based fast instability simulators that run on the order of milliseconds, which fits the requirement of the real-time plasma control system. We demonstrate the feasibility of this workflow by first creating a big database from GTC systematic linear global electromagnetic simulations of the current-driven kink instabilities in DIII-D plasmas, and then developing SGTC linear internal kink instability simulators through supervised training. SGTC linear internal kink simulators demonstrate predictive capabilities for the mode instability properties including the growth rate and mode structure.
Funder
Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory
DIII-D National Fusion Facility
National Energy Research Scientific Computing Center
U.S. Department of Energy (DOE) SciDAC project ISEP
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献