Abstract
Abstract
We propose to use intense optical vortex to control laser-based ion acceleration for obtaining high-quality ion beams. An acceleration field favorable for generating well-collimated energetic proton beams results from the interaction of a tailored vortex laser pulse with thin solid-density foil in a blowout regime. Three-dimensional particle-in-cell simulations show that the foil protons can be efficiently accelerated to the GeV level in the form of a beam with small radius (<1 μm), narrow divergence (<0.1 rad), and low emittance (∼0.004π mm mrad). The proton beam is of high energy density (>1018 J m−3) and high brightness (>1022 A m−2 rad−2), exceeding that of the Gaussian laser case by four orders of magnitude, and the energy conversion efficiency is about 12 times that under the same laser intensity. The scheme can also be used to accelerate heavier, such as carbon, ions. The resulting ion beams should be useful as compact neutron source, for creation of warm dense matters, as well as ion-beam direct and indirect drive inertial confinement fusion, ultrafast diagnostics of the implosion dynamics in the latter, etc.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献