Mitigation of plasma–wall interactions with low-Z powders in DIII-D high confinement plasmas

Author:

Effenberg F.ORCID,Bortolon A.ORCID,Casali L.ORCID,Nazikian R.ORCID,Bykov I.ORCID,Scotti F.ORCID,Wang H.Q.ORCID,Fenstermacher M.E.ORCID,Lunsford R.ORCID,Nagy A.ORCID,Grierson B.A.ORCID,Laggner F.M.ORCID,Maingi R.ORCID,the DIII-D Team

Abstract

Abstract Experiments with low-Z powder injection in DIII-D high confinement discharges demonstrated increased divertor dissipation and detachment while maintaining good core energy confinement. Lithium (Li), boron (B), and boron nitride (BN) powders were injected in H-mode plasmas (I p = 1 MA, B t = 2 T, P NB = 6 MW, ⟨n e⟩ = 3.6–5.0 ⋅ 1019 m−3) into the upper small-angle slot divertor for 2 s intervals at constant rates of 3–204 mg s−1. The multi-species BN powders at a rate of 54 mg s−1 showed the most substantial increase in divertor neutral compression by more than an order of magnitude and lasting detachment with minor degradation of the stored magnetic energy W mhd by 5%. Rates of 204 mg s−1 of boron nitride powder further reduce edge localized mode-fluxes on the divertor but also cause a drop in confinement performance by 24% due to the onset of an n = 2 tearing mode. The application of powders also showed a substantial improvement of wall conditions manifesting in reduced wall fueling source and intrinsic carbon and oxygen content in response to the cumulative injection of non-recycling materials. The results suggest that low-Z powder injection, including mixed element compounds, is a promising new core-edge compatible technique that simultaneously enables divertor detachment and improves wall conditions during high confinement operation.

Funder

Office of Science

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3