Monte Carlo calculated detector-specific correction factors for Elekta radiosurgery cones

Author:

Renil Mon P SORCID,Meena Devi V N,Bhasi Saju,Nair Sneha S

Abstract

Abstract A radiation field is considered small if its dimension is lower than the range of secondary electrons and the collimating devices partially occlude the source. Different detector types, such as unshielded diodes, diamond detectors, and small-volume ion chambers, are used for small-field measurements. Although the active volumes of these detectors are small, their non-water equivalent materials cause response variations. Herein, we aim to calculate the correction factors for our clinical detectors, EDGE detector (Sun Nuclear), 60017 diode (PTW), and CC01 ion chamber (IBA), for stereotactic radiosurgery cones of diameters of 5–15 mm in an Elekta Synergy linear accelerator using a Monte Carlo simulation. An Elekta Synergy linear accelerator treatment head was simulated using BEAMnrc Monte Carlo code as per the manufacturer specification. All three detectors were simulated as per the manufacturer specification. Three EGSnrc user codes were used for the detector simulation based on the detector geometry. The Monte Carlo model of the treatment head was validated against the measured data for a standard field size of 10 × 10 cm2. The off-axis profile, percentage depth dose, and tissue phantom ratio TPR 10 20 were verified in the validation procedure. The measured and Monte Carlo calculated relative output factors (ROFs) were not consistent. In a 5 mm field size, EDGE diode overestimated the ROF by 7.06%, and 60017 diode to 4.611%. In a 7.5 mm field size, the variations were 4.295% and 3.691% for EDGE and 60017 diodes, respectively. CC01 ion chamber under-responded up to 10% because of its low-density active volume. The maximum corrections were obtained in the smallest field size, which were 0.939(0.007), 0.962(0.006), and 1.117(0.008) for EDGE, PTW T60017, and CC01 detectors, respectively. After applying the Monte Carlo calculated correction factor to the measured ROF, it became consistent with the Monte Carlo calculated ROF.

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3