Bioinspired design proposal for a new external bone fixator device

Author:

Buso Carla,Zanini Plínio,Titotto SilviaORCID

Abstract

Abstract The article presents a new medical device through an authorial and interdisciplinary approach. It consists of a flexible external fixator, whose flexible property may bring advantages over rigid mechanisms. Its design was inspired by the DNA biological mechanism of condensation, while the modeling was based on the pseudo-rigid modeling technique. From the models obtained, this study conducted prototyping and computational tests to obtain a proof-of-concept of the bioinspired theory and dynamic functioning effectiveness. The prototyping relied on hot glue manufacturing and the computational simulations consisted of linear static analysis. The experimental analysis concluded that the prototype with fewer beams and thinner beams delivered better results in all three parameters: flexibility, height variation and rotation arc. In the computational analysis, among the design models with the variation of the number of beams, the model with 8 beams performed better. Concerning thickness variation, the one whose beams measured 8 mm in thickness showed better results. Among the models with length variation, the design made with 100 mm long beams better equilibrated the parameters.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

IOP Publishing

Subject

General Nursing

Reference85 articles.

1. Burden of fractures in France: incidence and severity by age, gender, and site in 2016;Bouyer;Int. Orthop.,2020

2. Optimization of a patient-specific external fixation device for lower limb injuries;Alqahtani;Polymers.,2021

3. Natural origin materials for bone tissue engineering: properties, processing, and performance. in principles of regenerative medicine;Maia,2019

4. The epidemiology of mortality after fracture in England: variation by age, sex, time, geographic location, and ethnicity;Klop;Osteoporos Int.,2017

5. Fracture fixation;Taljanovic;Radiographics,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3