Frontiers in urethra regeneration: current state and future perspective

Author:

Vasyutin IgorORCID,Butnaru DenisORCID,Lyundup AlexeyORCID,Timashev PeterORCID,Vinarov AndreyORCID,Kuznetsov Sergey,Atala AnthonyORCID,Zhang YuanyuanORCID

Abstract

Abstract Despite the positive achievements attained, the treatment of male urethral strictures and hypospadiases still remains a challenge, particularly in cases of severe urethral defects. Complications and the need for additional interventions in such cases are common. Also, shortage of autologous tissue for graft harvesting and significant morbidity in the location of harvesting present problems and often lead to staged treatment. Tissue engineering provides a promising alternative to the current sources of grafts for urethroplasty. Since the first experiments in urethral substitution with tissue engineered grafts, this topic in regenerative medicine has grown remarkably, as many different types of tissue-engineered grafts and approaches in graft design have been suggested and tested in vivo. However, there have been only a few clinical trials of tissue-engineered grafts in urethral substitution, involving hardly more than a hundred patients overall. This indicates that the topic is still in its inception, and the search for the best graft design is continuing. The current review focuses on the state of the art in urethral regeneration with tissue engineering technology. It gives a comprehensive overview of the components of the tissue-engineered graft and an overview of the steps in graft development. Different cell sources, types of scaffolds, assembling approaches, options for vascularization enhancement and preclinical models are considered.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tissue Engineering Graft for Urethral Reconstruction: Is It Ready for Clinical Application?;Urology Research and Practice;2023-04-20

2. Urine-Derived Stem Cells for Epithelial Tissues Reconstruction and Wound Healing;Pharmaceutics;2022-08-11

3. The cell as a tool to understand and repair urethra;Scientific Advances in Reconstructive Urology and Tissue Engineering;2022

4. Emerging biomaterials for reproductive medicine;Engineered Regeneration;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3