PLGA nanoparticle loaded with antioxidants and photosensitizer for ROS shock mediated phototherapy of triple negative breast cancer

Author:

Buddhiraju Hima Sree,Balaraman Jayalakshmi,Dehariya Dheeraj,Pebam Monika,Eswar Kalyani,Rengan Aravind KumarORCID

Abstract

Abstract The potential use of antioxidants for photodynamic therapy (PDT) is investigated in this study. PDT causes reactive oxygen species (ROS)-mediated cell death; on the contrary, antioxidants scavenge ROS. The use of a photosensitizer along with an antioxidant photosensitizer compensates for the loss of ROS due to the use of antioxidant, eventually leading to cell death. In this work, for PDT and photothermal therapy (PTT), we have combined the photosensitizer IR 792 perchlorate dye with the antioxidants alpha-tocopherol (A) and p-coumaric acid (C) encapsulated in a polymeric nanocarrier (AC IR NPs). We have reported the synthesis of AC IR NPs using poly lactic-co-glycolic acid (PLGA) by nanoprecipitation method. The size of the polymeric nanoparticles was found to be 80.4 ± 15.6 nm, with a spherical morphology observed by scanning electron microscopy and transmission electron microscopy. The synthesized AC IR NPs demonstrated good biocompatibility in fibroblast cell lines (L929). Furthermore, the efficacy assessment of the as prepared nanosystem in vitro on breast cancer cell lines (4T1) revealed a significant cell death of nearly 80%. This could be attributed to the ROS generation leading to oxidative stress and inhibition of metastasis. This study provides evidence that the combination of antioxidant drugs along with photosensitizers have the potential to be an effective therapy for treating triple negative breast cancer.

Funder

Ministry of Education, India

Science and Engineering Research Board - CRG

CSIR

Science and Engineering Research Board - SUPRA

ICMR

INSPIRE

ICMR-CoE

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3