Histomorphometric evaluation, SEM, and synchrotron analysis of the biological response of biodegradable and ceramic hydroxyapatite-based grafts: from the synthesis to the bed application

Author:

Gasperini Flávio MarcosORCID,Fernandes Gustavo Vicentis OliveiraORCID,Mitri Fabio Franceschini,Calasans-Maia Mônica Diuana,Mavropoulos Elena,Malta Rossi Alexandre,Granjeiro José Mauro

Abstract

Abstract This study aimed to analyze the physicochemical and histological properties of nanostructured hydroxyapatite and alginate composites produced at different temperatures with and without sintering and implanted in rabbit tibiae. Hydroxyapatite-alginate (HA) microspheres (425–600 µm) produced at 90 and 5 °C without (HA90 and HA5) or with sintering at 1000 °C (HA90S and HA5S) were characterized and applied to evaluate the in vitro degradation; also were implanted in bone defects on rabbit’s tibiae (n = 12). The animals were randomly divided into five groups (blood clot, HA90S, HA5S, HA90, and HA5) and euthanized after 7 and 28 d. X-ray diffraction and Fourier-transform infrared analysis of the non-sintered biomaterials showed a lower crystallinity than sintered materials, being more degradable in vitro and in vivo. However, the sinterization of HA5 led to the apatite phase’s decomposition into tricalcium phosphate. Histomorphometric analysis showed the highest (p < 0.01) bone density in the blood clot group, similar bone levels among HA90S, HA90, and HA5, and significantly less bone in the HA5S. HA90 and HA5 groups presented higher degradation and homogeneous distribution of the new bone formation onto the surface of biomaterial fragments, compared to HA90S, presenting bone only around intact microspheres (p < 0.01). The elemental distribution (scanning electron microscope and energy dispersive spectroscopy and μXRF-SR analysis) of Ca, P, and Zn in the newly formed bone is similar to the cortical bone, indicating bone maturity at 28 d. The synthesized biomaterials are biocompatible and osteoconductive. The heat treatment directly influenced the material’s behavior, where non-sintered HA90 and HA5 showed higher degradation, allowing a better distribution of the new bone onto the surface of the biomaterial fragments compared to HA90S presenting the same level of new bone, but only on the surface of the intact microspheres, potentially reducing the bone-biomaterial interface.

Funder

Brazilian National Council for Science and Technology

Brazilian Center of Physics Research

Brazilian Synchrotron Light Laboratory

Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3