Development of Müller cell-based 3D biomimetic model using bioprinting technology

Author:

Jung Sung SukORCID,Son Jeonghyun,Yi Soo JinORCID,Kim Kyungha,Park Han Sang,Kang Hyun-WookORCID,Kim Hong KyunORCID

Abstract

Abstract Müller cells are the principal glial cells for the maintenance of structural stability and metabolic homeostasis in the human retina. Although various in vitro experiments using two-dimensional (2D) monolayer cell cultures have been performed, the results provided only limited results because of the lack of 3D structural environment and different cellular morphology. We studied a Müller cell-based 3D biomimetic model for use in experiments on the in vivo-like functions of Müller cells within the sensory retina. Isolated primary Müller cells were bioprinted and a 3D-aligned architecture was induced, which aligned Müller cell structure in retinal tissue. The stereographic and functional characteristics of the biomimetic model were investigated and compared to those of the conventional 2D cultured group. The results showed the potential to generate Müller cell-based biomimetic models with characteristic morphological features such as endfeet, soma, and microvilli. Especially, the 3D Müller cell model under hyperglycemic conditions showed similar responses as observed in the in vivo diabetic model with retinal changes, whereas the conventional 2D cultured group showed different cytokine and growth factor secretions. These results show that our study is a first step toward providing advanced tools to investigate the in vivo function of Müller cells and to develop complete 3D models of the vertebrate retina.

Funder

National Research Foundation of Korea

Korea Health Industry Development Institute

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3