Abstract
Abstract
The critical bone defect is still an urgent problem in the field of bone repair. Here, we reported a new type of chitosan (CS)–hydroxyapatite (HAP) scaffolds based on lyophilized platelet-rich fibrin (L-PRF) for releasing abundant growth factors to realize their respective functions. It also has strong mechanical properties to maintain the stability of the bone repair environment. However, acid-soluble CS hydrogels often contain toxic and organic solvents. Moreover, chemical agents may be used for cross-linking for better mechanical properties, further increasing cytotoxicity. In this study, we used an alkali/urea dissolution system to dissolve CS, which improved its mechanical properties and made it thermo-sensitive. Finally, the L-PRF-CS-HAP (P-C-H) composite scaffold was constructed by extrusion-based printing. The results showed that the printing ink had desirable printability and temperature sensitivity. The compressive properties of the scaffolds exhibited a trend of decline with L-PRF content increasing, but all of them could meet the strength of cancellous bone. Meanwhile, the scaffolds had high hydrophilicity, porosity, and could be degraded stably in vitro. The antibacterial properties of the scaffolds were also verified, greatly reducing the risk of infection during bone repair. It was also demonstrated that the release time of growth factor from L-PRF was significantly prolonged, and growth factor could still be detected after 35 d of sustained release. The capacity of cells to proliferate increased as the number of L-PRF components increased, indicating that L-PRF still exhibited biological activity after 3D printing.
Funder
Medical and health industry development Project
Changchun Science and Technology Bureau
Young and middle-aged scientific and technological innovation leading talents and team project
Science and Technology Department of Jilin Province
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献