The biomimetic surface topography of Rubus fruticosus leaves stimulate the induction of osteogenic differentiation of rBMSCs

Author:

Monteiro N O,Casanova M R,Fangueiro J F,Reis R L,Neves N MORCID

Abstract

Abstract The interaction between cells and biomaterials is essential for the success of biomedical applications in which the implantation of biomaterials in the human body is necessary. It has been demonstrated that material’s chemical, mechanical, and structural properties can influence cell behaviour. The surface topography of biomaterials is a physical property that can have a major role in mediating cellmaterial interactions. This interaction can lead to different cell responses regarding cell motility, proliferation, migration, and even differentiation. The combination of biomaterials with mesenchymal stem cells (MSCs) for bone regeneration is a promising strategy to avoid the need for autologous transplant of bone. Surface topography was also associated with the capacity to control MSCs differentiation. Most of the topographies studied so far involve machine-generated surface topographies. Herein, our strategy differentiates from the above mentioned since we selected natural surface topographies that can modulate cell functions for regenerative medicine strategies. Rubus fruticosus leaf was the selected topography to be replicated in polycaprolactone (PCL) membranes through polydimethylsiloxane moulding and using soft lithography. Afterwards, rat bone marrow stem cells (rBMSCs) were seeded at the surface of the imprinted PCL membranes to characterize the bioactive potential of our biomimetic surface topography to drive rBMSCs differentiation into the osteogenic lineage. The selected surface topography in combination with the osteogenic inductive medium reveals having a synergistic effect promoting osteogenic differentiation.

Funder

European Regional Development Fund

Norte Portugal Regional Operational Programme

Portuguese Foundation for Science and Technology

PORTUGAL

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3