Kappa-carrageenan based hybrid hydrogel for soft tissue engineering applications

Author:

Safarpour F,Kharaziha M,Mokhtari H,Emadi R,Bakhsheshi-Rad H RORCID,Ramakrishna SeeramORCID

Abstract

Abstract Biological materials such as cell-derived membrane vesicles have emerged as alternative sources for molecular delivery systems, owing to multicomponent features, the inherent functionalities and signaling networks, and easy-to-carry therapeutic agents with various properties. Herein, red blood cell membrane (RBCM) vesicle-laden methacrylate kappa-carrageenan (KaMA) composite hydrogel is introduced for soft tissue engineering. Results revealed that the characteristics of hybrid hydrogels were significantly modulated by changing the RBCM vesicle content. For instance, the incorporation of 20% (v/v) RBCM significantly enhanced compressive strength from 103 ± 26 kPa to 257 ± 18 kPa and improved toughness under the cyclic loading from 1.0 ± 0.4 kJ m−3 to 4.0 ± 0.5 kJ m−3 after the 5th cycle. RBCM vesicles were also used for the encapsulation of curcumin (CUR) as a hydrophobic drug molecule. Results showed a controlled release of CUR over three days of immersion in PBS solution. The RBCM vesicles laden KaMA hydrogels also supported in vitro fibroblast cell growth and proliferation. In summary, this research sheds light on KaMA/RBCM hydrogels, that could reveal fine-tuned properties and hydrophobic drug release in a controlled manner.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3