A functional extracellular matrix biomaterial enriched with VEGFA and bFGF as vehicle of human umbilical cord mesenchymal stem cells in skin wound healing

Author:

Xu ZhongjuanORCID,Cao Junjun,Zhao Zhe,Qiao Yong,Liu XingzhiORCID,Zhong Junjie,Wang BinORCID,Suo GuangliORCID

Abstract

Abstract The construction of microvascular network is one of the greatest challenges for tissue engineering and cell therapy. Endothelial cells are essential for the construction of network of blood vessels. However, their application meets challenges in clinic due to the limited resource of autologous endothelium. Mesenchymal stem cells can effectively promote the angiogenesis in ischemic tissues for their abilities of endothelial differentiation and paracrine, and abundant sources. Extracellular matrix (ECM) has been widely used as an ideal biomaterial to mimic cellular microenvironment for tissue engineering due to its merits of neutrality, good biocompatibility, degradability, and controllability. In this study, a functional cell derived ECM biomaterial enriched with VEGFA and bFGF by expressing the collagen-binding domain fused factor genes in host cells was prepared. This material could induce endothelial differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) and promote angiogenesis, which may improve the healing effect of skin injury. Our research not only provides a functional ECM material to inducing angiogenesis by inducing endothelial differentiation of hUCMSCs, but also shed light on the ubiquitous approaches to endow ECM materials different functions by enriching different factors. This study will benefit tissue engineering and regenerative medicine researches.

Funder

Ministry of Science and Technology (MOST) of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Natural Science Foundation of Jiangxi Province

Natural Science Foundation of Jiangsu Province

National Nature Science Foundation and Shanghai Municipal Government

National Natural Science Foundation of China

Key Project of Jiangsu Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3