Ce-doped MgO films on AZ31 alloy substrate for biomedical applications: preparation, characterization and testing

Author:

Hattab Marwa,Ben Hassen Samia,Spriano Silvia,Ferraris Sara,Cernea MarinORCID,Ben Amor Yasser

Abstract

Abstract Magnesium ions, MgO nanoparticles and thin films, magnesium alloys and cerium compounds are materials intensively studied due to their corrosion protection, antibacterial and pharmacological properties. In this work, we have designed, prepared and investigated, novel thin films of MgO doped with cerium, deposited on Mg alloy (AZ31) for temporary implants, in order to enhance their life time. More precisely, we report on microstructure and corrosion behavior of MgO pure and doped with 0.1 at % Ce films, fabricated by sol–gel route coupled with spin-coating technique, on AZ31 alloy substrate. A modified sol–gel method that start from magnesium acetylacetonate, cerium nitrate and 2–methoxyethanol (as a stabilizer for the sol) was been used successfully for cerium doped MgO sol precursor preparation. The structure and morphology of the surface of the coatings, before and after immersion for 7–30 d in Hank’s solution at 37 °C, were characterized by x-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscope, x-ray photoelectron spectroscopy and Fourier infrared transmittance spectrum (FT–IR). A comparison between the corrosion protection of undoped MgO and MgO doped with 0.1 at % Ce coatings on the AZ31 alloy substrate is performed by electrochemical tests and immersion tests using open circuit potential and electrochemical impedance spectroscopy in Hank’s solution, at 37 °C. The electrochemical results showed that the protection of the AZ31 alloy substrate against corrosion was better with the doped with 0.1 at % Ce MgO film deposited than with pure MgO coting. The investigations of the films after immersion in Hank’s solution, at 37 °C, for 7, 21 and 30 d indicated that the grown layer on the film is bone like apatite that suggests a good bioactivity of 0.1 at % Ce–doped MgO coating. Our work demonstrates that the performance corrosion protection of the biodegradable magnesium alloys used for orthopedic applications, in simulated physiological environments (Hank and Ringer) can be enhanced through coating with Ce3+ doped MgO sol–gel thin film.

Publisher

IOP Publishing

Reference76 articles.

1. The effect of mangesium ions on bone bonding to hydroxyapatite;Revell;Key Eng. Mater.,2004

2. Mechanisms of magnesium–stimulated adhesion of osteoblastic cells to commonly used orthopedic implants;Zreiqat;J. Biomed. Mater. Res.,2002

3. Biodegradable magnesium alloys for orthopedic applications: a review on corrosion, biocompatibility and surface modifications;Agarwal;J. Mater. Sci. Eng. C,2016

4. In vivo corrosion of four magnesium alloys and the associated bone response;Witte;Biomaterials,2005

5. Metallic osteosynthesis by means of an apparatus made of resorbing metal;Znamenskii;Khirurgiia,1945

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3