Preparation and characterization of a biocompatible glucose-sensitive electrospun nanofibers scaffolds containing dexamethasone with enhanced osteogenic properties in vitro high glucose environment

Author:

Jia YongliangORCID,Liu Junyu,Tan Ziwei,Liu Jiajia,Meng Xiangjie,Luo Dongmei,Fu Xinyu,Hou Ruxia,Li Peiwen,Chen Yurou,Wang Xiangyu

Abstract

Abstract Diabetes has made it challenging to repair alveolar bone defects. A successful method for bone repair utilizes a glucose-sensitive osteogenic drug delivery. This study created a new glucose-sensitive nanofiber scaffold with controlled dexamethasone (DEX) release. DEX-loaded polycaprolactone/chitosan nanofibers scaffolds were created using electrospinning. The nanofibers had high porosity (>90%) and proper drug loading efficiency (85.51 ± 1.21%). Then, glucose oxidase (GOD) was immobilized on the obtained scaffolds by a natural biological cross-linking agent, genipin (GnP), after soaking in the mixture solution containing GOD and GnP. The enzyme properties and glucose sensitivity of the nanofibers were investigated. The results showed that GOD was immobilized on the nanofibers and exhibited good enzyme activity and stability. Meanwhile, the nanofibers expanded gradually in response to the increase in glucose concentration, followed by the release of DEX increased. The phenomena indicated that the nanofibers could sense glucose fluctuation and possess favorable glucose sensitivity. In addition, the GnP nanofibers group showed lower cytotoxicity in the biocompatibility test compared with a traditional chemical cross-linking agent. Lastly, the associated osteogenesis evaluation found that the scaffolds effectively promoted MC3T3-E1 cells’ osteogenic differentiation in high-glucose environments. As a result, the glucose-sensitive nanofibers scaffolds offer a viable treatment option for people with diabetes with alveolar bone defects.

Funder

Special Research Funds of Shanxi Province Key Laboratory

Fundamental Research Program of Shanxi Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3