Development of a hyaluronic acid—collagen bioink for shear-induced fibers and cells alignment

Author:

Palladino SaraORCID,Schwab Andrea,Copes Francesco,D’Este MatteoORCID,Candiani GabrieleORCID,Mantovani DiegoORCID

Abstract

Abstract Human tissues are characterized by complex composition and cellular and extracellular matrix (ECM) organization at microscopic level. In most of human tissues, cells and ECM show an anisotropic arrangement, which confers them specific properties. In vitro, the ability to closely mimic this complexity is limited. However, in the last years, extrusion bioprinting showed a certain potential for aligning cells and biomolecules, due to the application of shear stress during the bio-fabrication process. In this work, we propose a strategy to combine collagen (col) with tyramine-modified hyaluronic acid (THA) to obtain a printable col-THA bioink for extrusion bioprinting, solely-based on natural-derived components. Collagen fibers formation within the hybrid hydrogel, as well as collagen distribution and spatial organization before and after printing, were studied. For the validation of the biological outcome, fibroblasts were selected as cellular model and embedded in the col-THA matrix. Cell metabolic activity and cell viability, as well as cell distribution and alignment, were studied in the bioink before and after bioprinting. Results demonstrated successful collagen fibers formation within the bioink, as well as collagen anisotropic alignment along the printing direction. Furthermore, results revealed suitable biological properties, with a slightly reduced metabolic activity at day 1, fully recovered within the first 3 d post-cell embedding. Finally, results showed fibroblasts elongation and alignment along the bioprinting direction. Altogether, results validated the potential to obtain collagen-based bioprinted constructs, with both cellular and ECM anisotropy, without detrimental effects of the fabrication process on the biological outcome. This bioink can be potentially used for a wide range of applications in tissue engineering and regenerative medicine in which anisotropy is required.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale analysis of a 3D fibrous collagen tissue;International Journal of Engineering Science;2024-02

2. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review;Biomaterials Research;2023-12-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3