Resveratrol promotes osteogenesis and angiogenesis through mediating immunology of senescent macrophages

Author:

Hang RuiqiangORCID,Wang Jiahui,Tian Xue,Wu Ruifeng,Hang Ruiyue,Zhao YuyuORCID,Sun Yonghua,Wang HonggangORCID

Abstract

Abstract Orthopedic implants have been used clinically to restore the functions of the compromised bone tissues, but there is still a relatively high risk of failure for elderly people. A critical reason is pro-inflammatory immune microenvironment created by senescent macrophages with homeostasis imbalance impairs osteogenesis and angiogenesis, two major processes involved in implant osseointegration. The present work proposes to use resveratrol as an autophagy inducing agent to upregulate the autophagy level of senescent macrophages to restore homeostasis, consequently generating a favorable immune microenvironment. The results show 0.1–1 μM of resveratrol can induce autophagy of senescent macrophages, promote cell viability and proliferation, reduce intracellular reactive oxygen species level, and polarize the cells to pro-healing M2 phenotype. The immune microenvironment created by senescent macrophages upon resveratrol stimulation can promote osteogenesis and angiogenesis, as manifested by upregulated proliferation, alkaline phosphatase activity, type I collagen secretion, and extracellular matrix mineralization of senescent osteoblasts as well as nitric oxide production, migration, and in vitro angiogenesis of senescent endothelial cells. In addition, resveratrol-loaded silk fibroin coatings can be fabricated on titanium surface through electrophoretic co-deposition and the coatings show beneficial effects on the functions of senescent macrophages. Our results suggest resveratrol can be used as surface additive of titanium implants to promote osseointegration of elderly people though regulating immunology of senescent macrophages.

Funder

Natural Science Foundation of Shanxi Province

Central Leading Science and Technology Development Foundation of Shanxi Province

Natural Science Foundation of Anhui Province Education Department

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3