Non-interference delivery of Ce6 and DOX in NIR light-responsive liposomes for synergetic cervical cancer therapy

Author:

Zhang Jia,Yang Yibo,Gao Yanting,Bai Zhimin,Zhang Xin,Li Kun,Liu Zhiwei,Shi Ming,Zhao Yunwei,Wang JidongORCID,Li JianORCID

Abstract

Abstract Multi-model combination treatment of malignant tumors can make up for the shortcomings of single treatment through multi-target and multi-path to achieve more ideal tumor treatment effect. However, the mutual interference of different drugs in the delivery process in vivo and the difficulty of effective drug accumulation in tumor cells are the bottlenecks of combined therapy. To this project, light-responsive liposomes loading doxorubicin (DOX) and chlorin e6 (Ce6) (DOX-Ce6-Lip) without mutual interference were engineered by thin film hydration method. This kind of nano-drug delivery system increased the drugs concentration accumulated in tumor sites through enhanced permeability and retention effect, and reduced the toxic and side effects of drugs on normal tissues in vivo. In addition, after entering the tumor cells, Ce6 produced a large number of reactive oxygen species under 660 nm NIR laser irradiation, which further oxidized the unsaturated fatty acid chain in the liposomes and caused the collapse of the liposomes, thus realizing the stimulus-responsive release of Ce6 and DOX. The concentrations of DOX and Ce6 in the tumor cells rapidly reached the peak and achieved a more effective combination of chemotherapy and photodynamic therapy (PDT). Consequently, DOX-Ce6-Lip followed by 660 nm NIR irradiation achieved an efficient tumor growth inhibition of 71.90 ± 3.14%, indicating the versatile potential of chemotherapy and PDT. In conclusion, this study provides a delivery scheme for drugs with different solubilities and an effectively combined anti-tumor therapy method.

Funder

Health and Family Planning Commission

Innovation Group

Foundation of Heilongjiang Province

National Natural Science Foundation of China

Hebei Natural Science Foundation

Natural Science Foundation of Hebei Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3