Timescale separation in the coordinated switching of bacterial flagellar motors

Author:

Yue Guanhua,Zhang Rongjing,Yuan JunhuaORCID

Abstract

Abstract The output of the bacterial chemotaxis signaling pathway, the level of the intracellular regulator CheY-P, modulates the rotation direction of the flagellar motor, thereby regulating bacterial run-and-tumble behavior. The multiple flagellar motors on an E. coli cell are controlled by a common cytoplasmic pool of CheY-P. Fluctuation of the CheY-P level was thought to be able to coordinate the switching of multiple motors. Here, we measured the correlation of rotation directions between two motors on a cell, finding that it surprisingly exhibits two well separated timescales. We found that the slow timescale (∼6 s) can be explained by the slow fluctuation of the CheY-P level due to stochastic activity of the chemotactic adaptation enzymes, whereas the fast timescale (∼0.3 s) can be explained by the random pulse-like fluctuation of the CheY-P level, due probably to the activity of the chemoreceptor clusters. We extracted information on the properties of the fast CheY-P pulses based on the correlation measurements. The two well-separated timescales in the fluctuation of CheY-P level help to coordinate multiple motors on a cell and to enhance bacterial chemotactic performance.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of China

Publisher

IOP Publishing

Subject

Cell Biology,Molecular Biology,Structural Biology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3