Author:
Chakraborty Debmalya,Black-Schaffer Annica M
Abstract
Abstract
Pair density waves, identified by Cooper pairs with finite center-of-mass momentum, have recently been observed in copper oxide based high T
c superconductors (cuprates). A charge density modulation or wave is also ubiquitously found in underdoped cuprates. Within a general mean-field one-band model we show that the coexistence of charge density waves (CDWs) and uniform superconductivity in d-wave superconductors like cuprates, generates an odd-frequency spin-singlet pair density wave, in addition to the even-frequency counterparts. The strength of the induced odd-frequency pair density wave depends on the modulation wave vector of the CDW, with the odd-frequency pair density waves even becoming comparable to the even-frequency ones in parts of the Brillouin zone. We show that a change in the modulation wave vector of the CDW from bi-axial to uni-axial, can enhance the odd-frequency component of the pair density waves. Such a coexistence of superconductivity and uni-axial CDW has already been experimentally verified at high magnetic fields in underdoped cuprates. We further discuss the possibility of an odd-frequency spin-triplet pair density wave generated in the coexistence regime of superconductivity and spin density waves, applicable to the iron-based superconductors. Our work thus presents a route to bulk odd-frequency superconductivity in high T
c superconductors.
Funder
Vetenskapsrådet
H2020 European Research Council
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献