Dissipation in hydrodynamics from micro- to macroscale: wisdom from Boltzmann and stochastic thermodynamics

Author:

Forastiere DaniloORCID,Avanzini FrancescoORCID,Esposito Massimiliano

Abstract

Abstract We show that macroscopic irreversible thermodynamics for viscous fluids can be derived from exact information-theoretic thermodynamic identities valid at the microscale. Entropy production, in particular, is a measure of the loss of many-particle correlations in the same way in which it measures the loss of system-reservoirs correlations in stochastic thermodynamics (ST). More specifically, we first show that boundary conditions at the macroscopic level define a natural decomposition of the entropy production rate (EPR) in terms of thermodynamic forces multiplying their conjugate currents, as well as a change in suitable nonequilibrium potential that acts as a Lyapunov function in the absence of forces. Moving to the microscale, we identify the exact identities at the origin of these dissipative contributions for isolated Hamiltonian systems. We then show that the molecular chaos hypothesis, which gives rise to the Boltzmann equation at the mesoscale, leads to a positive rate of loss of many-particle correlations, which we identify with the Boltzmann EPR. By generalizing the Boltzmann equation to account for boundaries with nonuniform temperature and nonzero velocity, and resorting to the Chapman–Enskog expansion, we recover the macroscopic theory we started from. Finally, using a linearized Boltzmann equation we derive ST for dilute particles in a weakly out-of-equilibrium fluid and its corresponding macroscopic thermodynamics. Our work unambiguously demonstrates the information-theoretical origin of thermodynamic notions of entropy and dissipation in macroscale irreversible thermodynamics.

Funder

Università degli Studi di Padova

European Research Council

Fonds National de la Recherche Luxembourg

Publisher

IOP Publishing

Reference84 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3