Ultra-high optical nonreciprocity with a coupled triple-resonator structure

Author:

Cao Zhen,Xie Yi Fei,He Bing,Lin QingORCID

Abstract

Abstract Optical transmission nonreciprocity as a widely investigated phenomenon is essential to various applications. Many sophisticated mechanisms have been proposed and tested for achieving the optical nonreciprocity on integrated scale, but the technical barriers still exist to their practical implementation. To have an ultra-high transmission nonreciprocity, we consider a simple physical mechanism of optical gain saturation applied to a structure of three mutually coupled cavities or fiber rings. The gain saturation processes in two of its components creates a significantly enhanced optical nonreciprocity that satisfies the requirements for the realistic applications. The structure enjoys two advantages of its wide working bandwidth and the flexibility in choosing its components. Moreover, it is possible to apply the structure to a faithful and non-reciprocal transmission of broadband pulse signals. The structure may considerably relax the constraints on the integrated photonic circuits based on the current technology.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3