The electronic and electromagnetic Dirac equations

Author:

Li MingjieORCID,Horsley S A R

Abstract

Abstract Maxwell’s equations and the Dirac equation are the first-order differential relativistic wave equation for electromagnetic waves and electronic waves respectively. Hence, there is a notable similarity between these two wave equations, which has been widely researched since the Dirac equation was proposed. In this paper, we show that the Maxwell equations can be written in an exact form of the Dirac equation by representing the four Dirac operators with 8 × 8 matrices. Unlike the ordinary 4 × 4 Dirac equation, both spin–1/2 and spin–1 operators can be derived from the 8 × 8 Dirac equation, manifesting that the 8 × 8 Dirac equation is able to describe both electrons and photons. As a result of the restrictions that the electromagnetic wave is a transverse wave, the photon is a spin–1 particle. The four–current in the Maxwell equations and the mass in the electronic Dirac equation also force the electromagnetic field to transform differently to the electronic field. We use this 8 × 8 representation to find that the Zitterbewegung of the photon is actually the oscillatory part of the Poynting vector, often neglected upon time averaging.

Funder

China Scholarship Council

TATA

Royal Society

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3