Author:
Strasser P,Fukumura S,Ino T,Iwai R,Kanda S,Kawamura S,Kitaguchi M,Nishimura S,Oku T,Okudaira T,Seo S,Shimizu H M,Shimizu K,Shimomura K,Tada H,Tanaka T,Torii H A,Yamauchi H,Yasuda H
Abstract
Abstract
Measurements of the muonic helium atom hyperfine structure (HFS) are a sensitive tool to test the theory of three-body atomic systems and bound-state quantum electrodynamics (QED) and to determine fundamental constants of the negative muon magnetic moment and mass. The world’s most intense pulsed negative muon beam at J-PARC MUSE brings an opportunity to improve previous measurements and test further CPT invariance by comparing the magnetic moments and masses of positive and negative muons. Test measurements at D-line are now in progress utilizing MuSEUM apparatus at zero field. The first results already have better accuracy than previous measurements in the 1980s. Also, the investigation of a new experimental approach to improve HFS measurements by repolarizing muonic helium atoms using a spin-exchange optical pumping (SEOP) technique was started. If successful, this would drastically improve the measurement accuracy.
Subject
Computer Science Applications,History,Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献