Classification and Counting of Moving Vehicle at Night with Similarity of Rear Lamp

Author:

Setiyono B,Susanti R D,Sulistyaningrum DR,Usadha IGN

Abstract

Abstract Congestion is caused by a large number of vehicles exceeding road capacity. If we know the amount of the average density of vehicles passing by, it can be a consideration of infrastructure development. Therefore, the authors made a study to classify and calculate vehicles at night using the similarity of vehicles rear lamp. The technique used by authors is to pair each vehicle’s rear lamps that have been detected which have the same characteristics, in this case, We used the similarity of pixels for the pairing process. After that, the pair of rear lamps will be calculated and classified as the type of motorbike or car. This study resulted in a calculation that in Video 1 with not-so-busy traffic conditions able to detect 79 of 88 motorbikes and 32 of 35 cars with accuracy 90,24%. Video 2 with fairly quiet conditions was able to detect 52 of 56 motorcycles and 9 of 11 cars with accuracy 91,04%. Video 3 with crowded traffic conditions can detect 63 of 71 motorcycles and 23 of 29 cars in actual conditions with accuracy 86,00%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference8 articles.

1. Nighttime Vehicle Tail Light Detection in Low Light Video Frames Using Matlab;Rohit;India. International Journal for Research in Applied Science & Engineering Technology,2015

2. Pendeteksian Objek Bola Dengan Metode Color Filtering Hsv Pada Robot Soccer Humanoid;Khamdi;Riau. Jurnal Nasional Teknik Elektro,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3