Electric Current-Assisted TLP: Bonding of Ultrathin-Walled Inconel 718 Capillaries Temperature Field Simulation and Microstructural Analysis

Author:

Song Yueshuai,Zhao Rui,Wan Min

Abstract

Abstract This study achieved the effective bonding of Inconel 718 ultra-thin-walled capillaries by employing a self-designed apparatus and a novel approach involving current-assisted transient liquid phase (TLP) bonding using BNI-2 brazing material in a vacuum environment. During the bonding process, rapid heating and a subsequent period of maintenance were achieved using Joule heating, followed by rapid cooling in the furnace. Compared to the traditional furnace-based TLP bonding, this method significantly improved the bonding efficiency, reduced energy consumption, and minimized the thermal impact on the base material. A temperature field simulation of the ultra-thin-walled capillary bonding was conducted using COMSOL multiphysics simulation software, allowing for the visualization of temperature distribution through temperature contour plots. Microstructural observations of specimens under various process parameters revealed the existence of the Diffusion Affected Zone (DAZ) and Isothermally Solidified Zone (ISZ) in the vertical brazed area of the capillary. Inadequate control of process parameters can lead to defects such as weld seam voids and channel blockage. Given the limited heat resistance of the thin-walled capillaries, excessive current and prolonged bonding time can result in elevated temperatures, which, in turn, may compromise the mechanical properties of the thin-walled capillary.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3