Flow and heat transfer near a cylinders row

Author:

Mityakov A V,Gusakov A A,Grekov M A,Seroshtanov V V

Abstract

Abstract The paper aims to investigate the dependence of heat transfer classification on the Reynolds number (Re) during flow around circular heated cylinders row. The investigated range of Re number varies from 4.5×103 up to 42×103. The distance between cylinders S was changed from 0.5d to 4d (where d is the cylinders dia). Cylinders surface temperature was kept constant. For each Re number, the case when the cylinders were mounted one after the other was investigated. To measure heat transfer and flow parameters (velocity, heat flux and heat transfer coefficient) near and at the cylinders surface, two experimental methods were used: gradient heatmetry and PIV. Heat flux and velocity fields were obtained from gradient heatmetry and PIV results, based on which the flow mode could be determined and compared with heat transfer mode. As a result, it was found that heat transfer is influenced by both the Reynolds number and the distance between the cylinders. The observed features are associated with influence on characteristics such as separation point location, boundary layer thickness, change in flow between the cylinders and vortices formation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. An Experimental Investigation of Heat Transfer Around a Tube in a Bank;Aiba;ASME. J. Heat Transfer.,1976

2. Heat transfer around tubes in in-line tube banks;Aiba;Bull. JSME,1982

3. Large Eddy Simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime;Prsic;Ocean Engineering,2014

4. Heat transfer and fluid flow over circular cylinders in cross flow;Jibran;NUST Journal of Engineering Sciences,2010

5. The effect of vortices structures on the flow-induced vibration of three flexible tandem cylinders;Fan;International Journal of Mechanical Sciences,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3