Author:
Ashwini B P,Sumathi R,Sudhira H S
Abstract
Abstract
Congested roads are a global problem, and increased usage of private vehicles is one of the main reasons for congestion. Public transit modes of travel are a sustainable and eco-friendly alternative for private vehicle usage, but attracting commuters towards public transit mode is a mammoth task. Commuters expect the public transit service to be reliable, and to provide a reliable service it is necessary to fine-tune the transit operations and provide well-timed necessary information to commuters. In this context, the public transit travel time is predicted in Tumakuru, a tier-2 city of Karnataka, India. As this is one of the initial studies in the city, the performance comparison of eight Machines Learning models including four linear namely, Linear Regression, Ridge Regression, Least Absolute Shrinkage and Selection Operator Regression, and Support Vector Regression; and four non-linear models namely, k-Nearest Neighbors, Regression Trees, Random Forest Regression, and Gradient Boosting Regression Trees is conducted to identify a suitable model for travel time predictions. The data logs of one month (November 2020) of the Tumakuru city service, provided by Tumakuru Smart City Limited are used for the study. The time-of-the-day (trip start time), day-of-the-week, and direction of travel are used for the prediction. Travel time for both upstream and downstream are predicted, and the results are evaluated based on the performance metrics. The results suggest that the performance of non-linear models is superior to linear models for predicting travel times, and Random Forest Regression was found to be a better model as compared to other models.
Subject
General Physics and Astronomy
Reference23 articles.
1. Urban travel time reliability at different traffic conditions;Zheng,2018
2. Data sources for urban traffic prediction: A review on classification, comparison and technologies;Ashwini,2020
3. When traffic flow prediction and wireless big data analytics meet;Chen;IEEE Netw.,2019
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献