Bus Travel Time Prediction: A Comparative Study of Linear and Non-Linear Machine Learning Models

Author:

Ashwini B P,Sumathi R,Sudhira H S

Abstract

Abstract Congested roads are a global problem, and increased usage of private vehicles is one of the main reasons for congestion. Public transit modes of travel are a sustainable and eco-friendly alternative for private vehicle usage, but attracting commuters towards public transit mode is a mammoth task. Commuters expect the public transit service to be reliable, and to provide a reliable service it is necessary to fine-tune the transit operations and provide well-timed necessary information to commuters. In this context, the public transit travel time is predicted in Tumakuru, a tier-2 city of Karnataka, India. As this is one of the initial studies in the city, the performance comparison of eight Machines Learning models including four linear namely, Linear Regression, Ridge Regression, Least Absolute Shrinkage and Selection Operator Regression, and Support Vector Regression; and four non-linear models namely, k-Nearest Neighbors, Regression Trees, Random Forest Regression, and Gradient Boosting Regression Trees is conducted to identify a suitable model for travel time predictions. The data logs of one month (November 2020) of the Tumakuru city service, provided by Tumakuru Smart City Limited are used for the study. The time-of-the-day (trip start time), day-of-the-week, and direction of travel are used for the prediction. Travel time for both upstream and downstream are predicted, and the results are evaluated based on the performance metrics. The results suggest that the performance of non-linear models is superior to linear models for predicting travel times, and Random Forest Regression was found to be a better model as compared to other models.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference23 articles.

1. Urban travel time reliability at different traffic conditions;Zheng,2018

2. Data sources for urban traffic prediction: A review on classification, comparison and technologies;Ashwini,2020

3. When traffic flow prediction and wireless big data analytics meet;Chen;IEEE Netw.,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalization strategies for improving bus travel time prediction across networks;Journal of Urban Management;2024-09

2. Bus Travel Time Variability Modelling Using Burr Type XII Regression: A Case Study of Klang Valley;KSCE Journal of Civil Engineering;2024-06-11

3. Bus Dwell Time Forecasting using Machine Learning Models;2023 7th International Conference on Trends in Electronics and Informatics (ICOEI);2023-04-11

4. Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data;IEEE Access;2023

5. A Comprehensive Survey on Parametric and Non-Parametric Machine Learning Approaches for Bus Arrival Time Prediction;2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3