Improvement of measurement accuracy using Bayesian inference - Reduction of instrumentation effort in an axial compressor

Author:

Cruz Gonçalo G.,Ottavy Xavier,Fontaneto Fabrizio

Abstract

Abstract As the next generation of turbomachinery components becomes more sensitive to instrumentation intrusiveness, a reduction of the number of measurement devices required for the evaluation of performance is a possible and cost-effective way to mitigate the arising of non-mastered experimental errors. A hybrid methodology that couples experimental techniques with modeling techniques through a Bayesian data-driven framework is employed to reduce the instrumentation effort. A numerical model is employed to provide an initial belief of the flow, which is then updated based on undersampled experimental observations by a Bayesian inference algorithm. The goal of the present work is to showcase the proposed hybrid methodology and demonstrate its partial application through Gaussian Process regression in reducing the instrumentation effort and testing time at the outlet of a low aspect ratio axial compressor stage representative of the last stage of a high-pressure compressor. Preliminary results show an accurate reconstruction of the mean flow field with a direct uncertainty quantification provided by the Bayesian approach.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3