Monitoring laser weld penetration status from the optical signal

Author:

Aleem S A A,Yusof M F M,Ishak M

Abstract

Abstract Spectrometers have demonstrated their value in laser welding by facilitating the comprehension of welding dynamics and the identification of defects. However, the complex interaction between the laser beam and the material being welded makes it difficult for spectrometers to accurately capture the depth and extent of weld penetration, predominantly because plasma formation during welding interferes. This study presents an innovative approach that integrates laser technology, spectrometers, and advanced data analysis methods to classify and characterize various penetration types in pulse laser welding procedures, with notable computational efficiency. The research entailed the execution of an experiment on a boron steel plate, wherein peak power (1000-1200 kW), pulse duration (2-4 ms), and pulse repetition rate (25-50 Hz) were systematically varied to achieve diverse penetration conditions. Two categories of joints were identified based on their depth of penetration through careful analysis of the collected data. The investigation demonstrated a positive correlation between the depth of weld penetration and the increment of laser energy, with peak power ranging from 1000 kW to 1200 kW. Consequently, an elevation in light intensity was observed related to deeper weld penetration. The information is essential for understanding the relationship between laser energy and weld penetration, highlighting the importance of controlling laser parameters to achieve desired welding results. The spectrums were analyzed using Principal Component Analysis (PCA) to distinguish between different welding conditions. Overlap was observed between data from different weld conditions due to limitations imposed by the restricted dataset. Expanding the sample size can rectify this limitation and improve the accuracy and dependability of analytical outcomes. This study’s results provide valuable insights into optimizing welding parameters and improving understanding of the welding process, specifically in Tailor Weld Blanks. The findings offer potential for improving welding quality and strengthening lightweight components in high-performance industries like aerospace and automotive engineering.

Publisher

IOP Publishing

Reference17 articles.

1. Beam offset detection in laser stake welding of Tee Joints using machine learning and spectrometer measurements;Jadidi;Sensors,2022

2. Ranked feature-based laser material processing monitoring and defect diagnosis using K-NN and SVM;Lee;Journal of Manufacturing Processes,2020

3. Quality Assessment Method based on a spectrometer in laser beam welding process;Yu;Metals,2020

4. Data-driven detection of laser welding defects based on real-time spectrometer signals;Zhang;IEEE Sensors Journal,2019

5. A spectroscopic method based on support Vector Machine and artificial neural network for fiber laser welding defects detection and classification;Chen;NDT & EInternational,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3